10 August 2019
Slides at: https://rebrand.ly/Nagoya2019-Part1
GitHub: https://github.com/jorgetendeiro/Nagoya-Workshop-10-Aug-2019
Fraud = scientifc misconduct.
Today we don’t talk about fraud explicitly.
We talk about something much harder to identify and erradicate:
Questionable research practices (QRPs).
Term coined by John, Loewenstein, & Prelec (2012).
See also Simmons, Nelson, & Simonsohn (2011).
(John et al., 2012; Schimmack, 2015).
From Bem (2004):
“(…) [L]et us (…) become intimately familiar with (…) the data. Examine them from every angle. Analyze the sexes separately. Make up new composite indices. If a datum suggests a new hypothesis, try to find further evidence for it elsewhere in the data. If you see dim traces of interesting patterns, try to reorganize the data to bring them into bolder relief. If there are participants you don’t like, or trials, observers, or interviewers who gave you anomalous results, drop them (temporarily). Go on a fishing expedition for something– anything– interesting.”
This is not OK unless the exploration is explicity stated.
Daryl Bem is the author of the famous 2011 precognition paper
(data used in Part 2 of today’s workshop).
Prof. Brian Wansink at Cornell University.
His description of the efforts of a visiting Ph.D student:
I gave her a data set of a self-funded, failed study which had null results (…). I said, “This cost us a lot of time and our own money to collect. There’s got to be something here we can salvage because it’s a cool (rich & unique) data set.” I had three ideas for potential Plan B, C, & D directions (since Plan A had failed). I told her what the analyses should be and what the tables should look like. I then asked her if she wanted to do them.
Every day she came back with puzzling new results, and every day we would scratch our heads, ask “Why,” and come up with another way to reanalyze the data with yet another set of plausible hypotheses. Eventually we started discovering solutions that held up regardless of how we pressure-tested them. I outlined the first paper, and she wrote it up (…). This happened with a second paper, and then a third paper (which was one that was based on her own discovery while digging through the data).
This isn’t being creative or thinking outside the box.
This is QRPing.
Yes.
Interestingly, science misconduct has been a longtime concern (see Babbage, 1830).
And for the sake of balance:
There are also some voices against this description of the current state of affairs (e.g., Fiedler & Schwarz, 2016).
Well, maybe not (yet).
Here’s an interesting preprint (from July 2019!) from a Japanese research group (Kyushu University):
Ikeda, A., Xu, H., Fuji, N., Zhu, S., & Yamada, Y. (2019). Questionable research practices following pre-registration [Preprint]. doi: 10.31234/osf.io/b8pw9
It is strongly related to incentives (Nosek, Spies, & Motyl, 2012; Schönbrodt, 2015).
But, very importantly, it also happens in spite of the researcher’s best intentions.
Munafò et al. (2017)
Until very recently (Makel, Plucker, & Hegarty, 2012).
How poorly we build theory (see Gelman):
“It is not unusual that (…) this ad hoc challenging of auxiliary hypotheses is repeated in the course of a series of related experiments, in which the auxiliary hypothesis involved in Experiment 1 (…) becomes the focus of interest in Experiment 2, which in turn utilizes further plausible but easily challenged auxiliary hypotheses, and so forth. In this fashion a zealous and clever investigator can slowly wend his way through (…) a long series of related experiments (…) without ever once refuting or corroborating so much as a single strand of the network.”
Low-powered experiments:
“(…) It was found that the average power (probability of rejecting false null hypotheses) over the 70 research studies was .18 for small effects, .48 for medium effects, and .83 for large effects. These values are deemed to be far too small.”
“(…) it is recommended that investigators use larger sample sizes than they customarily do.”
See here.
Nobel prize winner, 2002.
About priming effects (but quite general remarks…):
“The storm of doubts is fed by (…) the recent exposure of fraudulent researchers, general concerns with replicability (…), multiple reported failures to replicate salient results (…), and the growing belief in the existence of a pervasive file drawer problem (…).”
“My reason for writing this letter is that I see a train wreck looming.”
“I believe that you should collectively do something about this mess.”
See also this impressive dynamic plot:
https://psyborgs.github.io/projects/replication-in-psychology/
Probability of an effect at least as extreme as the one we observed, given that \(\mathcal{H}_0\) is true.
\[\fbox{$ p\text{-value} = P\left(X_\text{obs} \text{ or more extreme}|\mathcal{H}_0\right) $}\]
The definition is simple enough, right?…
Consider the following statement (Falk & Greenbaum, 1995; Gigerenzer, Krauss, & Vitouch, 2004; Haller & Kraus, 2002; Oakes, 1986):
Suppose you have a treatment that you suspect may alter performance on a certain task. You compare the means of your control and experimental groups (say, 20 subjects in each sample). Furthermore, suppose you use a simple independent means \(t\)-test and your result is significant (\(t = 2.7\), \(df = 18\), \(p = .01\)). Please mark each of the statements below as “true” or “false.” False means that the statement does not follow logically from the above premises. Also note that several or none of the statements may be correct.
Try it!: rebrand.ly/pvalue
All statements are incorrect.
But how did students and teachers perceive these statements?
This was in 2004. But things did not improve since…
This paper expands Goodman (2008) and elaborates on 25 misinterpretations.
Special issue with 43 (!!) papers (Wasserstein, Schirm, & Lazar, 2019).
Moving to a world beyond “\(p<.05\)”
“(…) it is hard to imagine a situation in which a dichotomous accept–reject decision is better than reporting an actual \(p\) value or, better still, a confidence interval.”
See, for instance, Hoekstra, Morey, Rouder, & Wagenmakers (2014).
A (say) 95% CI is a numerical interval found through a procedure that, if repeated across a series of hypothetical data, leads to an interval covering the true parameter 95% of the times.
Confused?
So is the vast majority of psychologists…
From Hoekstra et al. (2014), mimicking the \(p\) value study by Gigerenzer et al. (2004).
Try it!: rebrand.ly/confint
All statements are incorrect.
But how did students and teachers perceive these statements?
“If we were to repeat the experiment over and over, then 95% of the time the confidence intervals contain the true mean.”
How informative is this?!
Mental note:
Remember this when interpreting
Bayesian credible intervals in part 2 of today’s workshop!
For completeness, not everyone agrees with the Hoekstra study (García-Pérez & Alcalá-Quintana, 2016; Miller & Ulrich, 2016; see also a reply by Morey, Hoekstra, Rouder, & Wagenmakers, 2016).
“The Basic and Applied Social Psychology (BASP) (…) emphasized that the null hypothesis significance testing procedure (NHSTP) is invalid (…). From now on, BASP is banning the NHSTP.”
Did it actually work? For a reflection, see Fricker, Burke, Han, & Woodall (2019).
(…) I will encourage authors to provide replication syntax and data through public repositories. Moreover, I will encourage the journal to focus on a manuscript’s research design and the author’s justification thereof, rather than the results, with the aim of ensuring that transparent studies that explore a research question with equipoise, will be published.
Editorial (Harrington et al., 2019).
“(…) a requirement to replace \(p\) values with estimates of effects or association and 95% confidence intervals”
Among many many, advices,
“Novice researchers err either by overgeneralizing their results or, equally unfortunately, by overparticularizing.”
Six principles:
This is an editorial of a special issue consisting of 43 (!!) papers.
Main ideas:
“(…) it is time to stop using the term “statistically significant” entirely. Nor should variants such as “significantly different,” “\(p < 0.05\),” and “nonsignificant” survive, whether expressed in words, by asterisks in a table, or in some other way."
But:
“Despite the limitations of \(p\)-values (…), however, we are not recommending that the calculation and use of continuous \(p\)-values be discontinued. Where \(p\)-values are used, they should be reported as continuous quantities (e.g., \(p = 0.08\)). They should also be described in language stating what the value means in the scientific context.”
“What you will NOT find in this issue is one solution that majestically replaces the outsized role that statistical significance has come to play.”
Accept uncertainty (I cannot stress this enough!).
Be thoughtful, open, and modest.
Editorial, educational, and other institutional practices will have to change.
This includes: Journals, funding agencies, education, career system.
Value replicability, open materials and data, and reliable practices (which all take time) over “publish or perish”.
(Interestingly: A recent comeback in Psychological Science.)
Most likely, each of us has some skeleton’s in their scientific closets.
We’ve all fallen prey to one or more of the problems mentioned today.
Full disclosure:
I have too!!
So:
No one is better than anyone.
Or in the words of Brian Nosek (as quoted here):
“We’re not here to be right. We’re here to get it right.”
(But we can talk about it too!…)
Today we focus on statistics.
After the break:
Gentle introduction to Bayesian statistics.
Agnoli, F., Wicherts, J. M., Veldkamp, C. L. S., Albiero, P., & Cubelli, R. (2017). Questionable research practices among italian research psychologists. PLOS ONE, 12(3), e0172792. doi: 10.1371/journal.pone.0172792
Babbage, C. (1830). Reflections on the Decline of Science in England: And on Some of Its Causes. Retrieved from http://www.gutenberg.org/files/1216/1216-h/1216-h.htm
Bem, D. J. (2004). Writing the empirical journal article. In The compleat academic: A career guide, 2nd ed (pp. 185–219). Washington, DC, US: American Psychological Association.
Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. The Journal of Abnormal and Social Psychology, 65(3), 145–153. doi: 10.1037/h0045186
Cuddy, A. J. C., Schultz, S. J., & Fosse, N. E. (2018). P-Curving a More Comprehensive Body of Research on Postural Feedback Reveals Clear Evidential Value for Power-Posing Effects: Reply to Simmons and Simonsohn (2017) - Amy J. C. Cuddy, S. Jack Schultz, Nathan E. Fosse, 2018. Psychological Science. doi: 10.1177/0956797617746749
Eich, E. (2014). Business Not as Usual. Psychological Science, 25(1), 3–6. doi: 10.1177/0956797613512465
Falk, R., & Greenbaum, C. (1995). Significance Tests Die Hard - the Amazing Persistence of a Probabilistic Misconception. Theory & Psychology, 5(1), 75–98. doi: 10.1177/0959354395051004
Fanelli, D. (2009). How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data. PLOS ONE, 4(5), e5738. doi: 10.1371/journal.pone.0005738
Fiedler, K., & Schwarz, N. (2016). Questionable Research Practices Revisited. Social Psychological and Personality Science, 7(1), 45–52. doi: 10.1177/1948550615612150
Flore, P. C., Mulder, J., & Wicherts, J. M. (2019). The influence of gender stereotype threat on mathematics test scores of Dutch high school students: A registered report. Comprehensive Results in Social Psychology, 1–35. doi: 10.1080/23743603.2018.1559647
Fraser, H., Parker, T., Nakagawa, S., Barnett, A., & Fidler, F. (2018). Questionable research practices in ecology and evolution. PLOS ONE, 13(7), e0200303. doi: 10.1371/journal.pone.0200303
Fricker, R. D., Burke, K., Han, X., & Woodall, W. H. (2019). Assessing the Statistical Analyses Used in Basic and Applied Social Psychology After Their p -Value Ban. The American Statistician, 73(sup1), 374–384. doi: 10.1080/00031305.2018.1537892
Fried, E. I. (2017). The 52 symptoms of major depression: Lack of content overlap among seven common depression scales. Journal of Affective Disorders, 208, 191–197. doi: 10.1016/j.jad.2016.10.019
Friese, M., Loschelder, D. D., Gieseler, K., Frankenbach, J., & Inzlicht, M. (2019). Is Ego Depletion Real? An Analysis of Arguments. Personality and Social Psychology Review, 23(2), 107–131. doi: 10.1177/1088868318762183
Galak, J., LeBoeuf, R. A., Nelson, L. D., & Simmons, J. P. (2012). Correcting the Past: Failures to Replicate Psi (SSRN Scholarly Paper No. ID 2001721). Retrieved from Social Science Research Network website: https://papers.ssrn.com/abstract=2001721
García-Pérez, M. A., & Alcalá-Quintana, R. (2016). The Interpretation of Scholars’ Interpretations of Confidence Intervals: Criticism, Replication, and Extension of Hoekstra et al. (2014). Frontiers in Psychology, 7. doi: 10.3389/fpsyg.2016.01042
Gendron, M., Crivelli, C., & Barrett, L. F. (2018). Universality Reconsidered: Diversity in Making Meaning of Facial Expressions. Current Directions in Psychological Science, 27(4), 211–219. doi: 10.1177/0963721417746794
Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual : What you always wanted to know about significance testing but were afraid to ask. Retrieved from https://library.mpib-berlin.mpg.de/ft/gg/GG_Null_2004.pdf
Goodman, S. (2008). A dirty dozen: Twelve p-value misconceptions. Seminars in Hematology, 45(3), 135–140. doi: 10.1053/j.seminhematol.2008.04.003
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. European Journal of Epidemiology, 31(4), 337–350. doi: 10.1007/s10654-016-0149-3
Griggs, R. A. (2014). Coverage of the Stanford Prison Experiment in Introductory Psychology Textbooks. Teaching of Psychology, 41(3), 195–203. doi: 10.1177/0098628314537968
Hagger, M. S., Chatzisarantis, N. L. D., Alberts, H., Anggono, C. O., Batailler, C., Birt, A. R., … Zwienenberg, M. (2016). A Multilab Preregistered Replication of the Ego-Depletion Effect. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11(4), 546–573. doi: 10.1177/1745691616652873
Haller, H., & Kraus, S. (2002). Misinterpretations of significance: A problem students share with their teachers? Methods of Psychological Research, 7(1), 1–20. Retrieved from https://www.metheval.uni-jena.de/lehre/0405-ws/evaluationuebung/haller.pdf
Harrington, D., D’Agostino, R. B., Gatsonis, C., Hogan, J. W., Hunter, D. J., Normand, S.-L. T., … Hamel, M. B. (2019). New Guidelines for Statistical Reporting in the Journal. New England Journal of Medicine, 381(3), 285–286. doi: 10.1056/NEJMe1906559
Heathers, J. (2018). Big psychology studies that failed to replicate [Tweet]. Retrieved from https://twitter.com/jamesheathers/status/1006287906087071748
Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J. (2014). Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21(5), 1157–1164. doi: 10.3758/s13423-013-0572-3
Ikeda, A., Xu, H., Fuji, N., Zhu, S., & Yamada, Y. (2019). Questionable research practices following pre-registration [Preprint]. doi: 10.31234/osf.io/b8pw9
Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLOS Medicine, 2(8), e124. doi: 10.1371/journal.pmed.0020124
John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the Prevalence of Questionable Research Practices With Incentives for Truth Telling. Psychological Science, 23(5), 524–532. doi: 10.1177/0956797611430953
Kerr, N. L. (1998). HARKing: Hypothesizing After the Results are Known. Personality and Social Psychology Review, 2(3), 196–217. doi: 10.1207/s15327957pspr0203_4
Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Bahník, Š., Bernstein, M. J., … Nosek, B. A. (2014). Investigating Variation in Replicability. Social Psychology, 45(3), 142–152. doi: 10.1027/1864-9335/a000178
Maes, E., Boddez, Y., Alfei, J. M., Krypotos, A.-M., D’Hooge, R., De Houwer, J., & Beckers, T. (2016). The elusive nature of the blocking effect: 15 failures to replicate. Journal of Experimental Psychology. General, 145(9), e49–71. doi: 10.1037/xge0000200
Makel, M. C., Plucker, J. A., & Hegarty, B. (2012). Replications in Psychology Research: How Often Do They Really Occur? Perspectives on Psychological Science, 7(6), 537–542. doi: 10.1177/1745691612460688
Martinson, B. C., Anderson, M. S., & Vries, R. de. (2005). Scientists behaving badly. Nature, 435(7043), 737. doi: 10.1038/435737a
McKelvie, P., & Low, J. (2002). Listening to Mozart does not improve children’s spatial ability: Final curtains for the Mozart effect. British Journal of Developmental Psychology, 20(2), 241–258. doi: 10.1348/026151002166433
Meehl, P. E. (1967). Theory-Testing in Psychology and Physics: A Methodological Paradox. Philosophy of Science, 34(2), 103–115. Retrieved from http://www.jstor.org/stable/186099
Miller, J., & Ulrich, R. (2016). Interpreting confidence intervals: A comment on Hoekstra, Morey, Rouder, and Wagenmakers (2014). Psychonomic Bulletin & Review, 23(1), 124–130. doi: 10.3758/s13423-015-0859-7
Mobley, A., Linder, S. K., Braeuer, R., Ellis, L. M., & Zwelling, L. (2013). A Survey on Data Reproducibility in Cancer Research Provides Insights into Our Limited Ability to Translate Findings from the Laboratory to the Clinic. PLOS ONE, 8(5), e63221. doi: 10.1371/journal.pone.0063221
Morey, R. D., Hoekstra, R., Rouder, J. N., & Wagenmakers, E.-J. (2016). Continued misinterpretation of confidence intervals: Response to Miller and Ulrich. Psychonomic Bulletin & Review, 23(1), 131–140. doi: 10.3758/s13423-015-0955-8
Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C., Percie du Sert, N., … Ioannidis, J. P. A. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1(1), 0021. doi: 10.1038/s41562-016-0021
Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific Utopia: II. Restructuring Incentives and Practices to Promote Truth Over Publishability. Perspectives on Psychological Science, 7(6), 615–631. doi: 10.1177/1745691612459058
Oakes, M. W. (1986). Statistical inference : A commentary for the social and behavioural sciences. Chichester: John Wiley & Sons.
Oostenbroek, J., Suddendorf, T., Nielsen, M., Redshaw, J., Kennedy-Costantini, S., Davis, J., … Slaughter, V. (2016). Comprehensive Longitudinal Study Challenges the Existence of Neonatal Imitation in Humans. Current Biology, 26(10), 1334–1338. doi: 10.1016/j.cub.2016.03.047
Ranehill, E., Dreber, A., Johannesson, M., Leiberg, S., Sul, S., & Weber, R. A. (2015). Assessing the Robustness of Power Posing: No Effect on Hormones and Risk Tolerance in a Large Sample of Men and Women. Psychological Science, 26(5), 653–656. doi: 10.1177/0956797614553946
Reicher, S., & Haslam, S. A. (2006). Rethinking the psychology of tyranny: The BBC prison study. British Journal of Social Psychology, 45(1), 1–40. doi: 10.1348/014466605X48998
Ritchie, S. J., Wiseman, R., & French, C. C. (2012). Failing the Future: Three Unsuccessful Attempts to Replicate Bem’s “Retroactive Facilitation of Recall” Effect. PLoS ONE, 7(3). doi: 10.1371/journal.pone.0033423
Schimmack, U. (2015). Questionable Research Practices: Definition, Detect, and Recommendations for Better Practices. Retrieved from https://replicationindex.com/2015/01/24/questionable-research-practices-definition-detect-and-recommendations-for-better-practices/
Schönbrodt, F. (2015). Questionable Research Practices. Retrieved from https://osf.io/bh7zv/
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psychological Science, 22(11), 1359–1366. doi: 10.1177/0956797611417632
Spreckelsen, T. F. (2018). Editorial: Changes in the field: Banning p-values (or not), transparency, and the opportunities of a renewed discussion on rigorous (quantitative) research. Child and Adolescent Mental Health, 23(2), 61–62. doi: 10.1111/camh.12277
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing Transparency Through a Multiverse Analysis. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11(5), 702–712. doi: 10.1177/1745691616658637
Steele, K. M., Bass, K. E., & Crook, M. D. (1999). The Mystery of the Mozart Effect: Failure to Replicate. Psychological Science, 10(4), 366–369. doi: 10.1111/1467-9280.00169
Trafimow, D., & Marks, M. (2015). Editorial. Basic and Applied Social Psychology, 37(1), 1–2. doi: 10.1080/01973533.2015.1012991
Vadillo, M. A., Gold, N., & Osman, M. (2018). Searching for the bottom of the ego well: Failure to uncover ego depletion in Many Labs 3. Royal Society Open Science, 5(8), 180390. doi: 10.1098/rsos.180390
van der Zee, T., Anaya, J., & Brown, N. J. L. (2017). Statistical heartburn: An attempt to digest four pizza publications from the Cornell Food and Brand Lab. BMC Nutrition, 3(1), 54. doi: 10.1186/s40795-017-0167-x
Wagenmakers, E.-J., Beek, T., Dijkhoff, L., Gronau, Q. F., Acosta, A., Adams, R. B., … Zwaan, R. A. (2016). Registered Replication Report: Strack, Martin, & Stepper (1988). Perspectives on Psychological Science, 11(6), 917–928. doi: 10.1177/1745691616674458
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2), 129–133. doi: 10.1080/00031305.2016.1154108
Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a World Beyond “p \(<\) 0.05”. The American Statistician, 73(sup1), 1–19. doi: 10.1080/00031305.2019.1583913
Watts, T. W., Duncan, G. J., & Quan, H. (2018). Revisiting the Marshmallow Test: A Conceptual Replication Investigating Links Between Early Delay of Gratification and Later Outcomes. Psychological Science, 29(7), 1159–1177. doi: 10.1177/0956797618761661
Wicherts, J. M., Veldkamp, C. L. S., Augusteijn, H. E. M., Bakker, M., van Aert, R. C. M., & van Assen, M. A. L. M. (2016). Degrees of Freedom in Planning, Running, Analyzing, and Reporting Psychological Studies: A Checklist to Avoid p-Hacking. Frontiers in Psychology, 7. doi: 10.3389/fpsyg.2016.01832
Wilkinson, L., & Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594–604. doi: 10.1037/0003-066X.54.8.594